45 research outputs found

    Automatic Monitoring of dairy cows’ lying behaviour using a computer vision system in open barns

    Get PDF
    Received: January 31st, 2023 ; Accepted: April 9th, 2023 ; Published: April 27th, 2023 ; Correspondence: [email protected] Livestock Farming offers opportunities for automated, continuous monitoring of animals, their productivity, welfare and health. The video-based assessment of animal behaviour is an automated, non-invasive and promising application. The aim of this study is to identify possible parameters in dairy cows’ lying behaviour that are the basis for a holistic computer vision-based system to assess animal health and welfare. Based on expert interviews and a literature review, we define parameters and their optimum in form of gold standards to evaluate lying behaviour automatically. These include quantitative parameters such as daily lying time, lying period length, lying period frequency and qualitative parameters such as extension of the front and hind legs, standing in the lying cubicles, or total lateral position. The lying behaviour is an example within the research context for the development of a computer vision-based tool for automated detection of animal behaviour and appropriate housing design

    Extent and Volume of Lava Flows Erupted at 9°50′N, East Pacific Rise in 2005–2006 From Autonomous Underwater Vehicle Surveys

    Get PDF
    Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid-ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near-bottom bathymetric data. We present near-bottom data collected during 19 autonomous underwater vehicle (AUV) Sentry dives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m-resolution bathymetric grid and 20 cm-resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2 pre-eruption survey collected with AUV ABE in 2001. Pre- and post-eruption surveys, combined with sidescan sonar images and seismo-acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre- and post-eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.publishedVersio

    Extent and volume of lava flows erupted at 9°50’N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wu, J., Parnell‐Turner, R., Fornari, D., Kurras, G., Berrios‐Rivera, N., Barreyre, T., & McDermott, J. Extent and volume of lava flows erupted at 9°50’N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010213, https://doi.org/10.1029/2021gc010213.Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid-ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near-bottom bathymetric data. We present near-bottom data collected during 19 autonomous underwater vehicle (AUV) Sentry dives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m-resolution bathymetric grid and 20 cm-resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2 pre-eruption survey collected with AUV ABE in 2001. Pre- and post-eruption surveys, combined with sidescan sonar images and seismo-acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre- and post-eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.This project is supported by National Science Foundation grants OCE-1834797, OCE-1949485, OCE-194893, OCE-1949938, and by Scripps Institution of Oceanography's David DeLaCour Endowment Fund

    Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9°50′N

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.)

    Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q07022, doi:10.1029/2008GC002047.Ultrahigh-resolution bathymetric maps (25 cm grid) are used to quantify the physical dimensions of and spatial relationships between tectonic, volcanic, and hydrothermal features at six hydrothermal vent fields in the Lau back-arc basin. Supplemented with near-bottom photos, and nested within regional DSL-120A side-scan sonar data, these maps provide insight into the nature of hydrothermal systems along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR). Along-axis transitions evident in localized volcanic morphology and tectonic characteristics include a change from broad low-relief volcanic domes (hundreds of meters wide, <10 m tall) that are dominated by pillow and lobate lava morphologies and are cut by faults and fissures to higher aspect ratio volcanic domes (tens of meters wide, tens of meters tall) dominated by aa-type lava morphologies, with finger-like flows, and few tectonic structures. These along-axis differences in localized seafloor morphology suggest differences in hydrothermal circulation pathways within the shallow crust and correlate with regional transitions in a variety of ridge properties, including the large-scale morphology of the ridge axis (shallow axial valley to axial high), seafloor lava compositions, and seismic properties of the upper crust. Differences in morphologic characteristics of individual flows and lava types were also quantified, providing an important first step toward the remote characterization of complex terrains associated with hydrothermal vent fields.Support for field and laboratory studies was provided by the National Science Foundation under grant OCE02-41796 (M.K.T.). Additional support for data analysis and integration was provided by the National Science Foundation under grant OCE03-28117 (S.M.C.)

    Interplay between faults and lava flows in construction of the upper oceanic crust : the East Pacific Rise crest 9°25′–9°58′N

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06005, doi:10.1029/2006GC001399.The distribution of faults and fault characteristics along the East Pacific Rise (EPR) crest between 9°25′N and 9°58′N were studied using high-resolution side-scan sonar data and near-bottom bathymetric profiles. The resulting analysis shows important variations in the density of deformational features and tectonic strain estimates at young seafloor relative to older, sediment-covered seafloor of the same spreading age. We estimate that the expression of tectonic deformation and associated strain on “old” seafloor is ~5 times greater than that on “young” seafloor, owing to the frequent fault burial by recent lava flows. Thus the unseen, volcanically overprinted tectonic deformation may contribute from 30% to 100% of the ~300 m of subsidence required to fully build up the extrusive pile (Layer 2A). Many longer lava flows (greater than ~1 km) dam against inward facing fault scarps. This limits their length at distances of 1–2 km, which are coincident with where the extrusive layer acquires its full thickness. More than 2% of plate separation at the EPR is accommodated by brittle deformation, which consists mainly of inward facing faults (~70%). Faulting at the EPR crest occurs within the narrow, ~4 km wide upper crust that behaves as a brittle lid overlying the axial magma chamber. Deformation at greater distances off axis (up to 40 km) is accommodated by flexure of the lithosphere due to thermal subsidence, resulting in ~50% inward facing faults accommodating ~50% of the strain. On the basis of observed burial of faults by lava flows and damming of flows by fault scarps, we find that the development of Layer 2A is strongly controlled by low-relief growth faults that form at the ridge crest and its upper flanks. In turn, those faults have a profound impact on how lava flows are distributed along and across the ridge crest.The field and laboratory studies were supported by NSF grants OCE-9819261 (to H.S., M.A.T., and D.J.F.), OCE-0525863 (D.J.F. and S.A.S.), OCE-0138088 (M.P.), WHOI Vetlesen Foundation Funds (J.E., D.J.F., and S.A.S.). Additional support by INSU/CNRS to J.E. is also acknowledged

    Channelized lava flows at the East Pacific Rise crest 9°–10°N : the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund

    Upper crustal structure and axial topography at intermediate spreading ridges : seismic constraints from the southern Juan de Fuca Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B12104, doi:10.1029/2005JB003630.We use multichannel seismic reflection data to image the upper crustal structure of 0-620 ka crust along the southern Juan de Fuca Ridge (JdFR). The study area comprises two segments spreading at intermediate rate with an axial high morphology with narrow (Cleft) and wide (Vance) axial summit grabens (ASG). Along most of the axis of both segments we image the top of an axial magma chamber (AMC). The AMC along Cleft deepens from south to north, from 2.0 km beneath the RIDGE Cleft Observatory and hydrothermal vents near the southern end of the segment, to 2.3 km at the northern end near the site of the 1980’s eruptive event. Along the Vance segment, the AMC also deepens from south to north, from 2.4 km to 2.7 km. Seismic layer 2A, interpreted as the basaltic extrusive layer, is 250-300 m thick at the ridge axis along the Cleft segment, and 300-350 m thick along the axis of the Vance segment. However off-axis layer 2A is similar in both segments (500-600 m), indicating ~90% and ~60% off-axis thickening at the Cleft and Vance segments, respectively. Half of the thickening occurs sharply at the walls of the ASG, with the remaining thickening occurring within 3-4 km of the ASG. Along the full length of both segments, layer 2A is thinner within the ASG, compared to the ridge flanks. Previous studies argued that the ASG is a cyclic feature formed by alternating periods of magmatism and tectonic extension. Our observations agree with the evolving nature of the ASG. However, we suggest that its evolution is related to large changes in axial morphology produced by small fluctuations in magma supply. Thus the ASG, rather than being formed by excess volcanism, is a rifted flexural axial high. The changes in axial morphology affect the distribution of lava flows along the ridge flanks, as indicated by the pattern of layer 2A thickness. The fluctuations in magma supply may occur at all spreading rates, but its effects on crustal structure and axial morphology are most pronounced along intermediate spreading rate ridges.This study was supported by the National Science Foundation grants OCE-0002551 to Woods Hole Oceanographic Institution, OCE-0002488 to Lamont-Doherty Earth Observatory, and OCE-0002600 to Scripps Institution of Oceanography

    Central Anomaly Magnetization High documentation of crustal accretion along the East Pacific Rise (9°55′–9°25′N)

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04015, doi:10.1029/2007GC001611.Near-bottom magnetic data collected along the crest of the East Pacific Rise between 9°55′ and 9°25′N identify the Central Anomaly Magnetization High (CAMH), a geomagnetic anomaly modulated by crustal accretionary processes over timescales of ∼104 years. A significant decrease in CAMH amplitude is observed along-axis from north to south, with the steepest gradient between 9°42′ and 9°36′N. The source of this variation is neither a systematic change in geochemistry nor varying paleointensity at the time of lava eruption. Instead, magnetic moment models show that it can be accounted for by an observed ∼50% decrease in seismic Layer 2A thickness along-axis. Layer 2A is assumed to be the extrusive volcanic layer, and we propose that this composes most of the magnetic source layer along the ridge axis. The 9°37′N overlapping spreading center (OSC) is located at the southern end of the steep CAMH gradient, and the 9°42′–9°36′N ridge segment is interpreted to be a transition zone in crustal accretion processes, with robust magmatism north of 9°42′N and relatively low magmatism at present south of 9°36′N. The 9°37′N OSC is also the only bathymetric discontinuity associated with a shift in the CAMH peak, which deviates ∼0.7 km to the west of the axial summit trough, indicating southward migration of the OSC. CAMH boundaries (defined from the maximum gradients) lie within or overlie the neovolcanic zone (NVZ) boundaries throughout our survey area, implying a systematic relationship between recent volcanic activity and CAMH source. Maximum flow distances and minimum lava dip angles are inferred on the basis of the lateral distance between the NVZ and CAMH boundaries. Lava dip angles average ∼14° toward the ridge axis, which agrees well with previous observations and offers a new method for estimating lava dip angles along fast spreading ridges where volcanic sequences are not exposed.The research project was funded by National Science Foundation under grants OCE-9819261 and OCE- 0096468

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore